
 California State University, Long Beach

Department of Electrical Engineering

EE 471 Sec 01 7731 Design of Control Systems

Final Lab Project: Design of Control Systems to Swing Up and Stabilize an Inverted

Pendulum With a Reaction Wheel End Effector

Team Members

Katie Choi 016446948

 Hien Nguyen 016271110

Grayson Galisky 016620693

Faculty Advisor

Professor Hossein Jula

December 12, 2020

Table of contents

Table of contents 2

Preface 3

Introduction 3

Methods 4
List of equipment used 4

Physics modeling 4
Pendulum Parameters 5
Motor parameters 5
Experimental and theoretical measurements of key system parameters 6
State Space Modeling 9
LQR Modeling In Matlab 11
Pendulum, Motor, Sampling Time, and Power Supply Parameter Configuration 11
State Space Modeling and LQR Controller 11
Simulink Model 12
Swing up controller 13
Arduino Firmware for LQR Controller 14
Documentation of Hardware Setup 17
Experimental Results for LQR controller 18
PID intro 18
Matlab for PID 18
Experimental implementation of PID (firmware here) 18

Discussion 18

Results 19

Conclusion 19

References page 19

Preface
Antun, creator of the simpleFOC project, was very helpful in the creation of this project. The

CAD files and code in our project are modified versions of the ones found on the simpleFOC

page*. Our modified CAD files and code can be downloaded from this link

(https://ggalisky.weebly.com/control-systems-projects.html) or you can request a copy from

graysongalisky@gmail.com​ if the aforementioned link is no longer working. These

modifications are to the mounting holes to allow the system to fit our specific brushless motor

and other parts. Our swing up controller is also heavily inspired/ derived from the simpleFOC

swing up controller*. Our lab team greatly appreciates the availability of Antun to answer

questions via email about his project and different control methods he has explored. A video

presentation of the information in this project report can be found at this link: . If the video link

is no longer working please email the previously mentioned email address for a copy of the video

presentation

Introduction
In this project we will be designing and building a control system to Swing Up and Stabilize an

Inverted Pendulum With a Reaction Wheel End Effector (IPWRW). We will first create a

theoretical physics based model of an IPWRW. Then we will use our model to design a IPWRW

hardware platform and control systems to drive swing up and stabilization. We will be

approaching the problem of stabilization by using both an LQR and PID controller. The swing up

controller will remain the same for both LQR and PID controllers.

mailto:graysongalisky@gmail.com

Methods

List of equipment used

● Arduino IDE
● MATLAB R2019B
● SIMULINK
● Pycharm IDE
● Agilent 6654A 0-60VDC 0-9A Variable Lab Power Supply
● Rigol DS1054 Osilicsope
● Protek 608 multimeter
● Hakko Soldering iron
● SC-2kg pocket scale
● Various test leads
● Ultimaker 2 3D printer
● Ender 3 Pro 3D printer
● ABS 3D printing filament
● PLA 3D printing filament
● 3D printed parts*
● simpleFOC motor driver shield
● 2 x ​8mm x 16mm x 5mm radial bearings
● 1 x Gimbal Brush motor Part number:: ​BGM4108-150HS
● 1 xArduino Uno
● 2 x CUI AMT103-V quadrature encoders
● 1 x 8mm OD 6mm x 30mm stainless steel tubing
● Various M3, M4, and M5 screws

Total project cost (not including test equipment and software): $170 USD

Physics modeling

In order to develop our control system we first need to understand the key physics parameters of

our system. Figure x gives a visual that highlights key parameters of our system. Table 1 outlines

all of the parameters we will be using to build our state space equations.

Figure 1 - Labeled 2D view of a IPWRW

Pendulum Parameters

● Mp - full pendulum mass

● Mr - mass of reaction wheel and motor

● Lr - distance from the base axis to the center of mass of the pendulum

● g - gravitational acceleration

● Iw - wheel moment of inertia

● Ip - full pendulum moment of inertia

Motor parameters

● Tm - motor torque constant

● Temf - motor back EMF constant

● Rp - motor phase resistance

Experimental and theoretical measurements of key system parameters

Figure 2 - Distance from base to center of mass in mm

Figure 3 - Moment of inertia of reaction wheel

Figure 4 - Moment of Inertia of Full Pendulum

Figure 5 - Mass Measurement of Pendulum, Reaction Wheel, Encoder, and Hardware

Parameters Measurement
Method

Value Units

Mp - full pendulum

mass

Weighing scale 0.273 kg

Mr - mass of reaction

wheel and motor

Weighing scale 0.260 kg

Lr - distance from the

base axis to the center

of mass of the

pendulum

Solidworks
measurement tool

0.11782 meters

Iw - wheel moment

of inertia

Solidworks
measurement tool

6.02108 x 10​-4 grams*mm^2

Table 1 - Measured System Parameters

State Space Modeling
Recall that:

Figure 6 - Angular velocity

Figure 7 - Angular acceleration of the pendulum

Ip - full pendulum

moment of inertia

Solidworks mass
measurement tool

0.0053 grams*mm^2

Tm - motor torque

constant

Data sheet of motor 0.25 N*m/A

EMF - motor back

EMF constant

Data sheet of motor 8/325 V

Rp - motor phase

resistance

Ohm meter 9.8 Ohms

g - gravitational

coefficient

Standard value 9.81 m/s^2

Figure 8 - Motor acceleration

Figure 9 - General SS equation

Figure 10 - Input vector

Figure 11 - State vector

Figure 12 - Output equation

Figure 13 - State matrix

Figure 14 - Input Matrix

Figure 15 - Output Matrix

Figure 16 - Feedforward Matrix

LQR Modeling In Matlab
Pendulum, Motor, Sampling Time, and Power Supply

Parameter Configuration

Mp = 0.273; ​% full pendulum mass

Mr = 0.260; ​% motor+wheel

Lr = 0.11782; ​% center of mass distance

Iw = 602108.05e-9; ​% Wheel moment of inertia

g = 9.81; ​% gravity acceleration

Ip = Mp*Lr^2 + 1516783.77e-9; ​% full pendulum moment of inertia

Tm = .25; ​% motor torque constant

Temf = 8/325; ​% motor back EMF constant

Rp = 10.2; ​% motor armature resistance

Ts = 25e-3; ​% controller sampling time

max_v = 18; ​% Maximum power supply voltage

State Space Modeling and LQR Controller

A = [0,1,0;g/Lr,0,Temf*Tm/(Ip*Rp);-g/Lr,0,Tm*Temf/(Iw*Rp)];​%State Matrix

B = [0;-Tm/(Ip*Rp);Tm/(Iw*Rp)]; ​%Input Matrix

C = [1,0,0]; ​%Output Matrix

D = [0]; ​%Feedforward Matrix

G = ss(A,B,C,D); ​%generate state space equation

T = ss2tf(A,B,C,D); ​%Transfer Function from state space equation

Gd = c2d(G,Ts);

Qd = diag([1,1,1]);

Rd = 500;

[K, P] = dlqr(Gd.a,Gd.b,Qd,Rd);

K =-K;

disp(strcat(​'Linearized LQR Controller Generated With dlqr '​))

disp(strcat(​'Target Voltage = '​,num2str(K(1)),​'*pendulum angle +

'​,num2str(K(2)),​'*pendulum velocity + '​,num2str(K(3)),​'*motor velocity'​))

OUTPUT:

Linearized LQR Controller Generated With dlqr

Target Voltage =48.9411*pendulum angle +5.4781*pendulum velocity +0.16154*motor velocity

Simulink Model

Figure 17 - Simulink Block Diagram

Figure 18 - Simulink Model Output

Swing up controller
As noted in the preface, our swing up controller is nearly identical to the swing up controller

featured in the simpleFOC project*. The swing up controller checks the velocity value of the

pendulum and then sends voltage to the motor to accelerate the motor in the opposite direction of

the pendulum velocity. This results in the pendulum swinging back and forth higher and higher

until it reaches a stabilization range. Once it reaches the stabilization range the swing up

controller switches to either our LQR or PID controller depending on the experiment we are

running. The variable in our code “swingup_voltage_multiplier” specifies how much voltage the

swing up controller will apply when swinging up. If this value is too high, the pendulum will

swing past the stabilization range too fast for the stabilization controller to compensate. If the

value is too low, the pendulum will not be able to swing up. The code for our swing up controller

can be seen in figure x below and in figure XX which shows the swing up controller in the full

context of the rest of the firmware

Figure 19 - Swing up controller code

Arduino Firmware for LQR Controller

NOTE: The firmware shown here is derived from the simpleFOC firmware found on github. We

have made modifications to the example code given to get our system working. These

modifications include reassigning pins, adding the signum function, modifying the swing up

controller, and modifying the LQR controller to better suit our specific hardware setup. A copy

of this code file can be found at the link provided in the preface.

// simpleFOC library, check out github for more information on its functions

#include​ ​<​SimpleFOC​.​h​>

// software interrupt library

#include​ ​<​PciManager​.​h​>

#include​ ​<​PciListenerImp​.​h​>

const​ ​double​ swingup_voltage_multiplier ​=​ .35;

// init of BLDC motor NOTE: make sure to find your motor pol pair value prior to running this code

// your pole pair number will go in place of the "11" below

BLDCMotor​ motor ​=​ ​BLDCMotor​(11);

// driver instance. Parameters passed through are pin numbers of the arduino uno that are PWM capable

BLDCDriver3PWM​ driver ​=​ ​BLDCDriver3PWM​(9​,​ 10​,​ 6​,​ 8);

// init for motor encoder. First two parameters are arduino pins for channel A and B. Last parameter is encoder resolution.

// we are using the CUI AMT 103V which has a user specifiable quadrature resolution. Ours is set to the default value of 2048

Encoder​ encoder ​=​ ​Encoder​(2​,​ 3​,​ 2048);

// interrupt routine

void​ doA(){encoder​.​handleA​();}

void​ doB(){encoder​.​handleB​();}

// init for pendulum encoder

Encoder​ pendulum ​=​ ​Encoder​(A1​,​ A2​,​ 2048);

// interrupt routine

void​ doPA(){pendulum​.​handleA​();}

void​ doPB(){pendulum​.​handleB​();}

// PCI manager interrupt

PciListenerImp​ listenerPA(pendulum​.​pinA​,​ doPA);

PciListenerImp​ listenerPB(pendulum​.​pinB​,​ doPB);

// defining signnum function used later

#define​ sign(x) ((x) ​<​ 0 ​?​ ​-​1 ​:​ ((x) ​>​ 0 ​?​ 1 ​:​ 0))

void​ ​setup​() {

 ​// setting up serial comm for passing back information for future analysis

 ​Serial​.​begin​(115200);

 ​// initialise motor encoder hardware

 encoder​.​init​();

 encoder​.​enableInterrupts​(doA​,​doB);

 ​// init the pendulum encoder

 pendulum​.​init​();

 ​PciManager​.​registerListener​(​&​listenerPA);

 ​PciManager​.​registerListener​(​&​listenerPB);

 ​// set control loop type to be used

 motor​.​controller​ ​=​ ​ControlType​::​voltage​;

 ​// link the motor to the encoder

 motor​.​linkSensor​(​&​encoder);

 ​// the value below should not exceed 24V.

 driver​.​voltage_power_supply​ ​=​ 18;

 driver​.​init​();

 ​// link the driver and the motor

 motor​.​linkDriver​(​&​driver);

 ​// initialize motor

 motor​.​init​();

 ​// align encoder and start FOC

 motor​.​initFOC​();

}

// loop downsampling counter

long​ loop_count ​=​ 0;

void​ ​loop​() {

 ​// ~1ms

 motor​.​loopFOC​();

 ​// control loop each ~25ms - sampling time

 ​if​(loop_count​++​ ​>​ 25){

 ​// calculate the pendulum angle

 ​float​ pendulum_angle ​=​ constrainAngle(pendulum​.​getAngle​() ​+​ M_PI);

 ​float​ target_voltage;

 ​if​(​abs​(pendulum_angle) ​<​ 0.5) ​// if angle small enough stabilize

 target_voltage ​=​ controllerLQR(pendulum_angle​,​ pendulum​.​getVelocity​()​,​ motor​.​shaftVelocity());

 ​else​ ​// else do swing-up

 ​// swing up controller with user defined swingup_voltage_multiplier

 ​// higher values of swingup_voltage_multiplier correspond to faster swing up accelerations

 ​// lower values of swingup_voltage_multiplier correspond to slower swing up accelerations

 ​// too high of a swingup_voltage_multiplier will lead to system not being able to stabilize

 ​// too lower of a swingup_voltage_multiplier will lead to not being able to reach swing up range

 target_voltage ​=​ ​-​_sign​(pendulum​.​getVelocity​())​*​motor​.​voltage_limit​*​swingup_voltage_multiplier;

 ​// set the target voltage to the motor

 motor​.​move​(target_voltage);

 ​// restart the counter

 loop_count​=​0;

 }

}

// function constraining the angle in between -pi and pi, in degrees -180 and 180

float​ constrainAngle(​float​ x){

 x ​=​ ​fmod​(x ​+​ M_PI​,​ ​_2PI​);

 ​if​ (x ​<​ 0)

 x ​+=​ ​_2PI​;

 ​return​ x ​-​ M_PI;

}

// LQR stabilization controller functions

// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum

float​ controllerLQR(​float​ p_angle​,​ ​float​ p_vel​,​ ​float​ m_vel){

 ​// if angle controllable

 ​// calculate the control law

 ​// LQR controller u = k*x

 ​// - k = [39.5, 5.6, 0.16]

 ​// - x = [pendulum angle, pendulum velocity, motor velocity]'

 ​float​ u ​=​ 39.5​*​p_angle ​+​ 5.6​*​p_vel ​+​ 0.16​*​m_vel;

 ​// limit the voltage set to the motor

 ​if​(​abs​(u) ​>​ motor​.​voltage_limit​*​0.7) u ​=​ sign(u)​*​motor​.​voltage_limit​*​0.7;

 ​return​ u;

}
Figure 20 - Full Arduino LQR Control System Firmware

Documentation of Hardware Setup

Figure 21 below shows a photo of our test setup. It consists of the parts listed in the “Parts List”

on page 4. The hardware for this project is straight forward. It consists of an Arduino nano with

the simpleFOC shield plugged into it. Connected to the simpleFOC shield are the motor and

encoders. The wiring harness that goes to the motor and motor encoder is covered in kevlar tube

mesh. We would not recommend this to others as it tends to get caught on small edges. The

entire system is clamped to a metal table via a very large N52 neodymium magnet. We would

also not recommend this as magnets this size can easily break fingers and cause injury. A final

note on the system our hardware setup had pinch points and lab members received minor cuts

from getting fingers pinched in the hardware. It is highly recommended for others attempting this

project to either modify the design to have less pinch points, or use more caution during

experimentation. The sharp metal aluminum base did not help with safety and it is recommended

that others trying to replicate this experiment build their test stand differently.

Figure 21 - Photograph of 3D Printing of The Reaction Wheel

Figure 22 - Photograph of IPWRW Hardware Test Bench

Experimental Results for LQR controller

PID intro
PID stands for Proportional, Integral, Derivative and help eliminate error caused by disturbances

combining the P, I and D. When setting these values, we must understand that if we set

proportional gain too high, the controller can constantly overshoot (can lead to oscillation).

There needs to be a good medium when setting this value as we need to reach small steady state

error and a stable system. The integral factor eliminates steady-state offset and we choose a value

that allows our system to curve to a line at amplitude of one. Finally, the derivative factor looks

at the rate of change of the error, it works to fix the overshoot that is created by proportional and

integral gain. For our inverted pendulum, we first simulate the system in MATLAB then use the

pidtool() command to see the PID tuner window. Using the tuning tools in the top of the

window, we adjust the plot until our desired output is shown. This shows our tuned response.

Then we click on show parameters and it tells us the values of Kp, Ki, and Kd to achieve the

graph that we created (shown in section ​Matlab for PID​).

System transfer function

Figure 23 - SS to transfer function.
Using Matlab, we get the following transfer function for theta:

Figure 24 - Open-loop transfer function of the system for theta.

Figure 24 - Step response of open-loop system for theta.

A quick look at the step response of the open loop system shows that it is unstable in figure X.
Matlab for PID

With the acquired transfer function of the open-loop system, we then design the appropriate PID
controller with Matlab PID tuner for the closed-loop system.

Figure 25 - Block diagram of the closed- loop system.

Figure 26 - PID Tuned Response

When parameters are identified, we see the controller parameters of the tuned response as:
Kp = -1040;

Ki = -4127;

Kd = -65;

Although the system is said to be stable in these parameters, you can clearly see that the values

of the PID controller are not “normal” due to being such a high number, for instance, Ki is

around negative 85k. We are unsure on why this is, and expect to test this value in the

experimental implementation of PID.

Arduino Firmware for PID Controller
#include <AutoPID.h>
#define sign(x) ((x) < 0 ? -1 : ((x) > 0 ? 1 : 0))
#include <SimpleFOC.h>
// software interrupt library
#include <PciManager.h>
#include <PciListenerImp.h>

// BLDC motor init
BLDCMotor motor = BLDCMotor(11);
// driver instance
BLDCDriver3PWM driver = BLDCDriver3PWM(9, 10, 6, 8);
//Motor encoder init
Encoder encoder = Encoder(2, 3, 2048);
// interrupt routine
void doA(){encoder.handleA();}
void doB(){encoder.handleB();}

// pendulum encoder init
Encoder pendulum = Encoder(A1, A2, 2048);
// interrupt routine
void doPA(){pendulum.handleA();}
void doPB(){pendulum.handleB();}
// PCI manager interrupt
PciListenerImp listenerPA(pendulum.pinA, doPA);
PciListenerImp listenerPB(pendulum.pinB, doPB);

//pid settings and gains
#define OUTPUT_MIN -255
#define OUTPUT_MAX 255
#define KP -1040
#define KI -4127
#define KD -65

double input, setPoint, output;
AutoPID myPID(&input, &setPoint, &output, OUTPUT_MIN, OUTPUT_MAX, KP, KI, KD);

unsigned long currentTime, previousTime;
float elapsedTime;
float error;
float lastError;

float cumError, rateError;

void setup() {
 Serial.begin(115200);
 int setPoint = 0;
 myPID.setBangBang(4);
 //set PID update interval to 4000ms
 myPID.setTimeStep(4000);
 // initialise motor encoder hardware
 encoder.init();
 encoder.enableInterrupts(doA,doB);

 // init the pendulum encoder
 pendulum.init();
 PciManager.registerListener(&listenerPA);
 PciManager.registerListener(&listenerPB);

 // set control loop type to be used
 motor.controller = ControlType::voltage;

 // link the motor to the encoder
 motor.linkSensor(&encoder);

 // driver
 driver.voltage_power_supply = 18;
 driver.init();
 // link the driver and the motor
 motor.linkDriver(&driver);

 // initialize motor
 motor.init();
 // align encoder and start FOC
 motor.initFOC();
}

// loop downsampling counter
long loop_count = 0;

void loop() {
 // ~1ms
 motor.loopFOC();

 // control loop each ~25ms
 if(loop_count++ > 25){

 // calculate the pendulum angle
 float pendulum_angle = constrainAngle(pendulum.getAngle() + M_PI);
 input = pendulum_angle;
 float target_voltage;
 if(abs(pendulum_angle) < 0.5) // if angle small enough stabilize
 {
//PID output here
myPID.run();
target_voltage = output;
if(abs(target_voltage) > motor.voltage_limit*0.7) target_voltage = sign(target_voltage)*motor.voltage_limit*0.7;
 }

 else // else do swing-up
 // sets 40% of the maximal voltage to the motor in order to swing up
 target_voltage = -_sign(pendulum.getVelocity())*motor.voltage_limit*0.4;

 // set the target voltage to the motor
 motor.move(target_voltage);

 // restart the counter

 loop_count=0;
 Serial.print(pendulum_angle);
 Serial.print(" ");
 Serial.println(target_voltage);
 }

}

// function constraining the angle in between -pi and pi, in degrees -180 and 180
float constrainAngle(float x){
 x = fmod(x + M_PI, _2PI);
 if (x < 0)
 x += _2PI;
 return x - M_PI;
}
Figure 27 - Arduino firmware for PID controller.

Experimental implementation of PID
For the implementation of the PID controller, we noticed that the system is unstable even though
the PID controller is fully operational. Multiple attempts to tune the PID controller for different
Kp, Ki and Kp values yield the same results. Further investigation shows that the velocity of the
motor was the limiting factor for the implementation of the PID. We realized that there is a limit
to how much our motor can spin. As such, the motor can only produce a small amount of
acceleration, thus force, if only theta is taken into account. Using Matlab, we plotted the step
response of the system for theta and motor velocity for comparison.

Figure 28 - Comparison of step response for theta and v systems.

From figure 28. we can clearly see that for selected parameters of Kp, Ki and Kd, the step

response of the theta system is stable while the step response of v is unstable. As such, the speed

of the motor quickly saturates at its maximum rpm and the motor no longer produces

acceleration/force for the system.

PID Modeling In Matlab
%% linear system equations

A = [0 1 0;...

 g/l_cm 0 c_e*c_m/(J_p*R_a);...

 -g/l_cm 0 -c_m*c_e/(J_w*R_a)];

B = [0;...

 -c_m/(J_p*R_a);...

 c_m/(J_w*R_a)];

C = [1 0 0];

C2 = [0 0 1];

D = [0];

%% Transfer function in s domain

[num,dem] = ss2tf(A,B,C,D); %theta system

G_tf = tf(num,dem);

[num2,dem2] = ss2tf(A,B,C2,D); %v system

G_tf2 = tf(num2,dem2);

% PID tuning

pidTuner(G_tf,pid)

Kp = -1040;

Ki = -4127;

Kd = -65;

C = pid(Kp,Ki,Kd);

T = feedback(G_tf*C,1);

figure

step(T)

grid on

title("Step response of \theta with PID controller")

T2 = feedback(G_tf2*C,1);

figure

step(T2)

grid on

title("Step response of v response with PID controller")

Discussion/Results
Overall, we decided that the LQR controller is the best design for this system. The resulting

system can be seen in our video demonstration with adequately good responses to disturbances.

The PID controller, though, works in theory for the theta system, it fails to take into account

other states of the system, in this case, motor velocity. As such, the PID controller is not suitable

to control the pendulum.

Conclusion
In conclusion, we were able to create the project with a cost of $170 USD along with 3D printing

parts for the wheel. We learned that 3D printing is fairly useful when creating a project like this.

LQR control is a powerful tool to control real world systems and PID control is a bit difficult to

use as we get odd gains when using the PID tuner and it fails to take other states of the system

into account. The implementation of LQR is successful with good response to disturbances.

References page

Skuric, Antun. “Askuric/inverted_inertia_pendulum.” ​GitHub​, 29 June 2019,

github.com/askuric/inverted_inertia_pendulum.

Simplefoc. “Simplefoc/Arduino-FOC-Reaction-Wheel-Inverted-Pendulum.” ​GitHub​, 24

May 2020, github.com/simplefoc/Arduino-FOC-reaction-wheel-inverted-pendulum.

Belascuen, Gonzalo, and Nahuel Aguilar. ARGENCON, 2018, pp. 1–9, ​Design, Modeling

and Control of a Reaction Wheel Balanced Inverted Pendulum​.

